
Acta Cryst. (2009). A65, 135–140 doi:10.1107/S0108767308043316 135

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 20 June 2008

Accepted 19 December 2008

# 2009 International Union of Crystallography

Printed in Singapore – all rights reserved

Many-beam dynamical simulation for multilayer
structures without a superlattice cell

Masahiro Ohtsuka,a* Takashi Yamazaki,a Iwao Hashimotoa and Kazuto Watanabeb

aDepartment of Physics, Tokyo University of Science, Tokyo, 162-8601, Japan, and bTokyo

Metropolitan College of Industrial Technology, Tokyo, 140-0011, Japan. Correspondence e-mail:

j1207612@ed.kagu.tus.ac.jp

A many-beam dynamical theory for plan-view high-resolution transmission

electron microscopy (HRTEM) images of multilayer systems without the

limitation of a superlattice cell is proposed. The accuracy of our method is

examined by comparing convergent-beam electron-diffraction calculations of

Si(011) and HRTEM calculations of a system of epitaxial Al(100) on GaAs(100).

Furthermore, this method is applied to CdSe clusters embedded in MgO, where

it is revealed that the relative shift of their crystal-lattice planes produces moiré-

like fringes.

1. Introduction

The ever-decreasing dimensions of devices during the last few

decades has necessitated the elucidation of the local proper-

ties of the materials used in semiconductor technology as well

as the strain induced around the interfaces in heterogeneous

systems (Timp, 1988; Hull et al., 2000). Modern devices are

rapidly approaching the atomic scale, and their nanoscale

behavior has become one of the most active areas of research

in materials science. As for heteroepitaxial thin films, the

interfacial structure and lattice mismatch at the interface

between the film and the substrate play a key role in

controlling the epitaxial quality, microstructure and physical

properties of the film. However, very few techniques are likely

to provide a highly localized and yet accurate analysis.

One technique for the characterization of such nano-

structures may be transmission electron microscopy (TEM);

TEM has several attractive features and is employed in many

different systems for observing different images. In particular,

high-resolution TEM (HRTEM) has been successfully used

for the structural analysis of many objects. Generally, cross-

section TEM is used to investigate the interfacial structures in

various heteroepitaxial films (Gao et al., 1999; Jia & Urban,

1999; Jia et al., 2003). However, the interfacial structure

information obtained using this technique is limited to one-

dimensional space. Plan-view TEM, on the other hand, can

provide significant structural information over a large inter-

facial area, which is necessary for understanding the

mechanism of lattice relaxation (Jiang et al., 2007). However,

the images obtained by plan-view TEM are not simple func-

tions of the crystal structures and do not always reveal the real

projected atomic structures due to a phase effect and lens

aberrations. Therefore, HRTEM images must be interpreted

carefully and extensive image simulations are required.

Dynamical simulation of electron diffraction is a well

known and popular technique; the simulation methods are

classified into two general types, namely, the multislice method

(Cowley & Moodie, 1957; Van Dyck, 1980; Ishizuka, 1982; Self,

1982) and the Bloch-wave method (Bethe, 1928; Fujimoto,

1959; Hirsch et al., 1965). The multislice method involves

mathematically slicing the specimen along the beam direction.

It is based on a convolution calculation and is thus quite

flexible. The Bloch-wave method is based on an eigenvalue

problem and provides a valuable physical insight into the

scattering process.

In order to perform dynamical simulations for defects such

as precipitates and heterostructures, the plan-view TEM

method is employed and a superlattice cell is generally

introduced, because most calculation processes in the two

methods are carried out without any change to their algo-

rithms. However, since the superlattice cell is selected such

that one lattice parameter is the least common multiple of the

other, the superlattice size becomes extremely large, thereby

making the calculation very difficult. This is a fundamental

limitation in both the Bloch-wave method and the multislice

method. In this paper, we expand on the layer-by-layer

method (Eaglesham et al., 1989; Rossouw et al., 1991; Al-

Khafaji et al., 1992; Wang et al., 1992; Rossouw & Perovic,

1993; Yamazaki et al., 2006) for plan-view TEM of embedded

clusters or interfaces to express the dynamical propagation of

fast electrons through successive crystal layers by using

interface boundary conditions and converting the transmitted

waves into incident waves in the next layer. This method

enables us to perform HRTEM simulations of a mismatched

multilayer film. These films revealed that moiré-like lattice

fringes are formed due to the relative shift of the crystal-lattice

planes of CdSe clusters embedded in MgO.

2. Theory

The basic concept of the layer-by-layer method using a

superlattice cell has been discussed in detail by several authors



(Rossouw et al., 1991; Wang et al., 1992; Yamazaki et al., 2006);

therefore, in this paper, we shall only briefly explain the

process. When a plane wave illuminates a multilayer structure,

as shown in Fig. 1, the incident wave with unit amplitude can

be written as
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where K
ð0Þ
k is the transverse (parallel to the surface) compo-

nent of the incident plane wave in vacuum and kð0Þz is the

longitudinal (normal to the surface) component of the inci-

dent wavevector in vacuum. The subscript (i) denotes the ith

layer (i = 0 represents the vacuum layer). In the Bloch-wave

model, the wavefunction formed by an incident wave at

r ¼ ðR; zÞ in the first layer can be expressed as
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where �ð1Þ;jðKð0Þk Þ and �ð1Þ;jðKð0Þk Þ denote the excitation ampli-

tudes and the eigenvalues for the jth branch in the first layer,

respectively. C
ð1Þ;j

gð1Þ
ðK
ð0Þ
k Þ denote the Bloch-wave coefficients for

Bragg reflection gð1Þ ¼ ðg
ð1Þ
k ; gð1Þz Þ. The Bloch-wave coefficients

and eigenvalues are determined by solving the fundamental

equation including absorption, which can be formulated as
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where K2 ¼ Kð0Þ
� �2

þU0, 2meVg�h=h- 2
¼ Ug�h þ iU 0g�h and

kj ¼ Kk; kz þ �
jðKkÞ

� �
. Ug�h and U0g�h denote the Fourier

coefficients of the elastic and absorption potentials, m denotes

the electron rest mass, and e denotes the electric charge.

By straightforward approximation, the boundary condition

on the entrance surface ðz ¼ z0 � 0Þ gives rise to the matrix

form
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where ½ ~CCð1ÞðKð0Þk Þ�
�1 is the inverse matrix of the eigenvector.

The wavefunction in the first layer can be rewritten as
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Thus, considering the transmission waves from the first layer at

z ¼ z1 to be the partial incident waves for the second layer, as

shown in Fig. 1, the incident wavefunction for the second layer

can be written using equation (5) as
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It should be noted that the transverse vector of the incident

direction K
ð0Þ
k for the first layer changes to Kð0Þk þ gð1Þk for the

second layer due to Bragg reflection gð1Þ, as shown in Fig. 1,

and the complex amplitudes A
ð1Þ

gð1Þ
ðK
ð0Þ
k ; z1Þ correspond to the
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Figure 1
Schematic diagram of an electron propagating through a multilayer
structure.



amplitudes for each partial incident wave. Therefore, the

wavefunction in the second layer is given as
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It should be noted that this wavefunction is calculated using

only the Bragg reflections gð2Þ excited by the inherent unit cell

in the second layer. The excitation amplitudes for the Bloch

states are calculated from the boundary condition in the same

manner as that for the first layer:
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where A
ð1Þ

gð1Þ
ðK
ð0Þ
k ; z1Þ is the complex amplitude of a partial

incident wave at the entrance boundary. All excitations must

be calculated for every g
ð1Þ
k . The incident wave for the third

layer at z ¼ z2 is written from the transformation of equation

(5) as
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Repeating the same calculation explained above, the trans-

mitted waves through n layers are written as
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where the transmission coefficients are expressed as
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In this manner, waves transmitted through a multilayer

structure can be obtained. Because a superlattice cell is not

required in this calculation, the number of waves in an

eigenvalue calculation is equal to the number of diffracted

waves excited by each unit cell. In other words, it is not

necessary to consider the waves excited by other unit cells and

double diffraction. Thus, the processing time required for each

eigenvalue calculation is less than that required for the

calculation in the conventional layer-by-layer method with a

superlattice cell. However, the number of eigenvalue calcu-

lations increases on considering partial incident waves.

Although this is a disadvantage, this method enables us to

carry out practical calculations for coincident lattices as well as

incommensurate lattices. Therefore, this method provides a

new and efficient way for quantitative analysis of a lattice-

mismatch system using TEM with dynamical simulation based

on the Bloch-wave method. It should be noted that this

method can be applied to convergent-beam electron diffrac-

tion (CBED) and high-angle annular dark field (HAADF)

scanning transmission electron microscopy (STEM) simula-

tions without any problem.

3. Results and discussion

3.1. Evaluation from zeroth-order Laue zone CBED patterns

First, whether or not our method yields an appropriate

result for various incidence azimuths is investigated by using

Acta Cryst. (2009). A65, 135–140 Masahiro Ohtsuka et al. � Many-beam simulation for multilayers 137

research papers

Figure 2
Schematic diagrams of the samples used in the convergence test of our
method. (a) The single-layer structure used in the conventional dynamical
simulation and (b) the two-layered structure used in the dynamical
simulation with both layers having the same thickness.



zeroth-order Laue zone (ZOLZ) CBED patterns for two

cases. In the first case, typical CBED calculations are

performed for a single Si(011) crystal, as shown in Fig. 2(a). In

the second case, the single crystal is first divided into two

layers of equal thickness, as shown in Fig. 2(b), and then our

method is applied. On the basis of the convergence test carried

out at 100 kV, 129 ZOLZ reflections were used in each

dynamical simulation. The corresponding simulated ZOLZ

CBED patterns at two thicknesses obtained by using typical

conventional dynamical simulation and our method are shown

in Figs. 3(a, d) and 3(b, e), respectively, where images on a

logarithmic scale are inserted in the upper right-hand quarter.

For a more detailed comparison, rocking curves of (000), (200)

and (400) discs are shown in Figs. 3(c) and 3(f). It is found that

our method and the usual calculation yield the same results for

each thickness.

3.2. Comparison of HRTEM images using a superlattice cell

Whether our method yields an appropriate result for a

highly epitaxial thin film on a substrate was examined by using

a system of epitaxial Al(100) on GaAs(100). Here it is

assumed that all Al atoms are projected onto Ga and As sites,

as illustrated in Fig. 4(a). Fig. 4(b) indicates the corresponding

diffraction pattern. The thickness of the Al and GaAs layers

was equal, as shown in Fig. 4(c). Figs. 5(a) and 5(b) show the

simulated wavefields of epitaxial Al on GaAs plotted against

the thickness by using our method and the conventional

method with a superlattice cell, respectively. In the super-

lattice method 293 ZOLZ reflections were used at 200 kV,

while in our method 145 ZOLZ reflections were used for the

Al layer and 293 for the GaAs layer, which are sufficient to

obtain the exact Bloch waves. It is found that there is no

difference between the two calculations. To further confirm

this result, a few intensities for transmission coefficients

against thickness calculated by our method and the conven-

tional method are shown in Fig. 5(c). The summation of all

diffracted intensities as well as (000), (020)Al/(220)GaAs and

(220)Al/(400)GaAs components calculated by our method agree

perfectly with those calculated by using the superlattice cell,

thus confirming the validity of our method.

3.3. Simulations of CdSe clusters embedded in MgO

Here, a CdSe cluster embedded in MgO was regarded as a

three-layered structure comprising 10 nm-thick wurtzite

structured CdSe with lattice parameters a = 4.298 and c =

7.002 Å sandwiched between 5 nm-thick rock-salt structured

MgO with lattice parameter a = 4.213 Å. The simulated

HRTEM image is shown in Fig. 6(a), where the acceleration

voltage is set to 200 kV, the spherical aberration coefficient Cs

is 1 mm, the defocus value �f is �50 nm, the objective aper-
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Figure 3
(a, b) Simulated CBED patterns of a 50 nm-thick [011]-oriented Si crystal using conventional dynamical simulation and our method, respectively. (c)
Rocking curves of (000), (200) and (400) discs along the [200] direction. (d–f) Same as (a–c) except that a 100 nm-thick [011]-oriented Si crystal is used.
The images displayed on a logarithmic scale are shown in the upper right-hand quarter of parts (a), (b), (d) and (e).



ture size is 20 mrad, the defocus spread � is 2 nm and the

illumination semi-angle � is 0.6 mrad. ½1210�CdSe is parallel to

½010�MgO, and ½0001�CdSe is parallel to ½001�MgO. In the simula-

tion, 57 ZOLZ reflections were used in the MgO layer and 191

reflections were used in the CdSe layer. Our method requires a

superlattice cell for a practical cluster calculation. However,

different superlattice cells (or unit cells) can be selected for

upper and lower layers, which is different to the conventional

method.

Fig. 6(a) exhibits a set of characteristic bright lines along the

½010�MgO direction. The pattern of the bright lines changes in a

complex way depending on the position, hereafter called

‘moiré-like fringes’. The moiré-like fringes may be regarded as

the moiré fringes at an atomic resolution. For ease of viewing,

the representative positions of the moiré-like fringes are

indicated by the black arrows and lines in Fig. 6(a). When two

thin crystal layers overlap and are rotated by a few degrees or

when their lattice constants differ, a pattern of interference

fringes is observed. These are known as moiré fringes and

were first reported on graphite lamellae by Mitsuishi et al.

(1951). For a two-layer system with different lattice constants

and a parallel orientation, the pattern is considered to be

generated due to double diffraction (Reimer, 1989). The

moiré fringes have a common period that is independent of

the position, which is different to the moiré-like fringes. In

order to observe the moiré-like fringes in detail, enlarged

HRTEM images of regions A, B and C indicated in Fig. 6(a)

are shown in the left-hand side of Fig. 6(b). The moiré-like

fringes commonly run along the ½010�MgO direction; however,

the number of bright lines and their spacing changes signifi-

cantly depending on the position.

The moiré-like fringes appear to be

related to the relative shift of the

two crystals. This fact is inferred

from comparing the bright lines

shown in Fig. 6(a) with the corre-

sponding projected potentials and

schematic relative shifts shown in

Fig. 6(b). In other words, the rela-

tive lattice shift between an

epitaxial film and a substrate or

embedded clusters and a host

crystalline matrix may be esti-

mated by the moiré-like fringes

through comparison of the experi-
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Figure 5
Comparison of through-thickness simulated exit wavefields for a two-layered system of epitaxial Al(100) on GaAs(100) with both layers having equal
thickness calculated by (a) our method and (b) with a superlattice. The schematic diagram of the superlattice cell is shown at the top right of (b). (c)
Comparison of each transmitted wave intensity and the summation of all diffracted intensities as a function of thickness calculated by our method and
with a superlattice. The arrows show which vertical axis is to be chosen.

Figure 4
(a) Schematic projected atomic positions, (b) electron-diffraction pattern for epitaxial Al(100) on
GaAs(100) and (c) schematic diagram of the Al/GaAs multilayer structure for dynamical simulations.



mental HRTEM images and the corresponding simulations

based on our method, since clear moiré-like fringes have been

reported in highly epitaxial thin films on substrates (Jiang et

al., 2007) and embedded nanocrystals (Donnelly & Rossouw,

1985, 1986; van Huis et al., 2004a,b).

4. Summary

A different dynamical theory for plan-view HRTEM for

multilayer systems without the limitation of a superlattice cell

is proposed. The accuracy of our method is clarified by

comparing CBED calculations of Si(011) and HRTEM

calculations of a system of epitaxial Al(100) on GaAs(100).

This method enables us to make a quantitative comparison

between the experimental and simulated HRTEM images for

a cluster (with a lattice mismatch) embedded in a host crys-

talline matrix and heteroepitaxial growth of lattice-

mismatched systems. Furthermore, simulations using this

method revealed that moiré-like fringes are formed due to the

relative shift of the crystal-lattice planes. This method can also

be applied to CBED and HAADF STEM simulations without

any problem.
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Figure 6
(a) Simulated HRTEM image of the three-layered structure comprising
10 nm-thick ½1010�-oriented wurtzite-structured CdSe sandwiched
between 5 nm-thick [100]-oriented rock-salt-structured MgO. (b) Left:
enlarged HRTEM images of regions A, B and C indicated by the white
squares in (a). Center: the corresponding projected potential images.
Right: the corresponding relative shift of the lattice planes.


